as a mixture of diastereoisomers in 25% yield (80% based on 9 recovered in the acid fraction). Attempts to convert the 3-methyl-3-(alkylthio)oxindole 10 to 11 with lithium aluminum hydride 14,19 proved unsuccessful. Indeed, the procedure was sluggish or completely ineffective in several model studies. Borane reduction of 3-substituted oxindoles has been reported to afford indolines.²⁰ However, with the additional 3-alkylthio substituent, we observed essentially quantitative conversion to the 3-substituted indoles on several model oxindoles with BH3·SMe2. Treatment of 10 with an excess of BH₃·SMe₂ at room temperature for 24 h likewise afforded 11 in 95% yield. Normally, the entire procedure $9 \rightarrow 11$ was accomplished without isolation of intermediates in a 2-pot, 24-h process. Our initial efforts in the synthesis of 13 involved the methyl ether as the phenol protecting group (e.g., 5, $R = CH_3$). After numerous failures with acidic-type reagents²¹ to deprotect 11 to 12, we found that mercaptide anions²² accomplished this transformation in 40-60% yields. However, the yields decreased on scaleup. Therefore, the synthesis was repeated with benzyl ether $(5, R = CH_2Ph)^{23}$, which was readily removed to give 129 [90%; NMR (acetone- d_6) δ 7.8 (br s, 1 H), 7.03 (s, 1 H), 6.83 (s, 1 H), 4.25-3.25 (m, 5 H), 2.86 (s, 3 H), 2.36 (s, 3 H)]. The methylsulfonyl group on anilines can be cleaved with sodium (2-methoxyethoxy)aluminum hydride.²⁴ This procedure was successful with 6 and should allow for the introduction of other groups on the indoline nitrogen at this, or later, juncture. The concept of forming bond a as an entry to the cyclopropylspirocyclohexadiene moiety was validated by first converting the alcohol to the bromide25 followed by exposure to a tertiary amine to give 13. This can be accomplished in one pot in 70% yield. The structure of 13 was based on 1H NMR, IR, UV, MS,26 and single-crystal X-ray analysis.²⁹ ## Additions and Corrections Photochemistry of Cis-Fused Bicyclo[4.n.0]-2,4-dienes. Ground State Conformational Control [J. Am. Chem. Soc. 1980, 102, 4456]. WILLIAM G. DAUBEN* and MICHAEL S. KELLOGG, Department of Chemistry, University of California, Berkeley, California 94720. On page 4459, the last paragraph in the left column should read as follows: The minor primary product, anti,cis-tricyclo-[5.4.0.0^{8.11}]undec-9-ene (27), the product predicted by orbital symmetry consideration (disrotatory), was formed in 3% yield upon extended irradiation. The structure was determined by spectral analysis and by its stereospecific conversion to the cis diene 3 at 220 °C. Assignment of the anti stereochemistry was based on the very small NMR coupling of the bridgehead allylic protons. Crystal and Molecular Structure of Cofacial Dicopper Hexyldiporphyrin-7 [J. Am. Chem. Soc. 1980, 102, 7115]. MARCOS H. HATADA, A. TULINSKY,* and C. K. CHANG, Department of Chemistry, Michigan State University, East Lansing, Michigan Page 7116: the intra- and intermolecular slip angles are interchanged—intra should be 46.4°, inter should be 43.5°. Pauling "3-Electron Bonds", "Increased-Valence", and 6-Electron 4-Center Bonding [J. Am. Chem. Soc. 1980, 102, 5195]. RICHARD D. HARCOURT, Department of Physical Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia. Page 5196 above eq 3 and page 5197 two lines above references: replace "obtained" with "obtain". Page 5197: add ",12" after "ref 7" in the text. Page 5198: (i) two lines below eq 16, replace "9" with "4"; (ii) in ref 18, replace "2, 1.5 and 1" with "1, 1.5 and 2"; (iii) column 2, omit "of eq 10" after "the CI wave function?". Page 5200: (i) in the caption for Figure 6, interchange c and d; (ii) in ref 41, replace "P. Passmore" with "J. Passmore". Page 5201: in ref 52, replace "2f" with "2g". Evidence for an Electron-Transfer Mechanism in the Reduction of Ketones by Main Group Metal Hydrides [J. Am. Chem. Soc. 1980, 102, 7779]. EUGENE C. ASHBY,* ANIL B. GOEL, and ROBERT N. DEPRIEST, School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332 Page 7780: in ref 7 M_2SO_4 should be H_2SO_4 . Page 7780: Scheme I should read as follows. Scheme I Mes₂C=0 + M—H $$\frac{f_{0s1}}{k_1}$$ Mes₂C $\frac{1}{k_2}$ Mes₂C $\frac{k_2}{k_2}$ $\frac{$ Accurate and Sensitive Determination, by a New Cobalt-59 Nuclear Magnetic Resonance Method, of Electron Acceptance and Hydrogen Bond Donation by Protic Solvents [J. Am. Chem. Soc. 1980, 102, 7818-7820]. PIERRE LASZLO* and ARMEL STOCKIS, Institut de Chimie Organique et de Biochimie, Université de Liège, Sart-Tilman, B-4000 Liège, Belgium. References 14 and 15 have been inadvertently interchanged. They should read: (14) Samo, M.; Yamatera, H.; Hatano, Y. Chem. Phys. Lett. 1979, 60, 257-260; and (15) Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry", 3rd ed.; Wiley: New York, 1972. ⁽¹⁹⁾ Wieland, T.; Grimm, D. Chem. Ber. 1965, 98, 1727. ⁽²⁰⁾ McEvoy, F. J.; Allen, G. R., Jr. J. Org. Chem. 1973, 38, 3350-3352. Borane dimethyl sulfide is preferred for the reduction of 3,3-dimethyloxindole to 3,3-dimethylindoline (Hester, J. B., unpublished results, The Upjohn ⁽²¹⁾ For example: McOmie, J. F. W.; Watts, M. L.; West, D. E. Tetra-hedron 1968, 24, 2289-2292. Vickery, E. H.; Pahler, L. F.; Eisenbraun, E. J. J. Org. Chem. 1979, 44, 4444-4446. Hanessian, S.; Guindon, Y. Tetrahedron Lett. 1980, 2305-2308. Williard, P. G.; Fryhle, C. B. Ibid. 1980, 3731-3734. This procedure afforded some of the desired 12. (22) Kelly, T. R.; Dali, H. M.; Tsang, W.-G. Tetrahedron Lett. 1977, ³⁸⁵⁹⁻³⁸⁶⁰ and ref 2-4 described therein. (23) Prepared in 95% yield from 4-chloro-3-nitroanisole: 48% HBr/ AcOH, 120 °C, 24 h; PhCH₂Br, K₂CO₃, acetone, DMF; mp 46.5-48.7 °C. ⁽²⁴⁾ Gold, E. H.; Babad, E. J. Org. Chem. 1972, 37, 2208-2210. ⁽²⁵⁾ The bromide derivative of 12 was isolated by rapid preparative TLC and structure determined by ¹H NMR and MS (positive Beilstein). On and structure determined by ¹H NMR and MS (positive Beilstein). On prolonged contact with silica gel it is converted to 13. (26) ¹H NMR (CDCl₃, 200 MHz) δ 9.5 (br s, 1 H), 6.83 (dd, H_a), 6.34 (s, H_b), 4.10 (d, H_c), 3.93 (dd, H_d), 3.04 (s, 3 H), 2.93 (m, H_c), 2.00 (d, 3 H), 1.97 (dd, H_f), 1.37 (dd, H_g); $J_{c,e} = 0.0$, $J_{c,d} = 9.7$, $J_{d,e} = 4.7$, $J_{e,f} = 7.7$, $J_{c,g} = 4.4$, $J_{K,H,a} = 2.0$, $J_{a,CH_3} \le 1.0$ Hz is consistent with ¹H NMR of CC-1065² and 3-azabicyclo[3.1.0]hexane.²⁷ IR (CHCl₃)²⁸ 3450, 3400–3100 (NH, OH), 1620 (CO), 1360, 1160 cm⁻¹ (SO₂). UV (MeOH)² λ 224 (ϵ 3 × 10⁴), 272 (4.8 × 10⁴) 338 (3 × 10⁴). MS, m/e calcd for C₁₃N₁₄N₂O₃S: 278.0725. Found: 278.0725. (27) Wendisch, D.; Naegele, W. Org. Magn. Reson. 1970, 2, 619–624. (28) Marx, J. N.; Argyle, J. C.; Norman, L. R. J. Am. Chem. Soc. 1974, 96, 2121. See also: Gramlich, W.; Plieninger, H. Helv. Chim. Acta 1979, ^{96, 2121.} See also: Gramlich, W.; Plieninger, H. Helv. Chim. Acta 1979, 112, 1573-1582. ⁽²⁹⁾ R = 0.079 on 2322 reflections: Chidester, C. G., unpublished results, Upjohn Co., 1981. Full details will be disclosed later.